Extracellular ATP Hydrolysis Inhibits Synaptic Transmission by Increasing pH Buffering in the Synaptic Cleft

نویسندگان

  • Rozan Vroman
  • Lauw J. Klaassen
  • Marcus H.C. Howlett
  • Valentina Cenedese
  • Jan Klooster
  • Trijntje Sjoerdsma
  • Maarten Kamermans
چکیده

Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation may be a widespread phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic acidification enhances GABAA signaling.

To determine the role of cellularly generated protons in synaptic signaling, we recorded GABA miniature IPSCs (mIPSCs) from cultured rat cerebellar granule cells (CGCs) while varying the extracellular pH buffering capacity. Consistent with previous reports, we found that increasing pH from 7.4 to 8.0 sped mIPSC rise time and suppressed both amplitude of the current and total charge transferred....

متن کامل

Catabolism of Ap4A and Ap5A by rat brain synaptosomes.

Adenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) and adenosine 5',5"'-P1,P5-pentaphosphate (Ap5A) are stored in and released from rat brain synaptic terminals. In the present study we investigated the hydrolysis of dinucleotides (Ap4A and Ap5A) in synaptosomes from the cerebral cortex of adult rats. Ap4A and Ap5A, but not Ap3A, were hydrolyzed at pH 7.5 in the presence of 20 mM Tris/HCl, 2.0 mM MgC...

متن کامل

Endogenous Acidification of the Inhibitory Synapse: Proton Amplification of Gabaa-mediated Neurotransmission

Maintenance of external pH is critical to ensuring proper CNS function. Recent work in excitatory transmission suggests that in vivo synaptic proton buffering is not sufficient to rigidly maintain an extracellular pH of 7.4. To extend this work to inhibitory synapses, I recorded miniature GABA inhibitory post-synaptic currents (mIPSCs) from cultured rat cerebellar granule cells (CGCs) under var...

متن کامل

Effects of pH buffering on horizontal and ganglion cell light responses in primate retina: evidence for the proton hypothesis of surround formation.

Negative feedback from horizontal cells to cone photoreceptors is regarded as the critical pathway for the formation of the antagonistic surround of retinal neurons, yet the mechanism by which horizontal cells accomplish negative feedback has been difficult to determine. Recent evidence suggests that feedback uses a novel, non-GABAergic pathway that directly modulates the calcium current in con...

متن کامل

Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease

Objective(s):Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014